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Abstract
Progress in fields of machine learning and adversar-
ial planning has benefited significantly from bench-
mark domains, from checkers and the classic UCI
data sets to Go and Diplomacy. In sequential
decision-making, agent evaluation has largely been
restricted to few interactions against experts, with
the aim to reach some desired level of performance
(e.g. beating a human professional player). We pro-
pose a benchmark for multiagent learning based on
repeated play of the simple game Rock, Paper, Scis-
sors along with a population of forty-three tourna-
ment entries, some of which are intentionally sub-
optimal. We describe metrics to measure the qual-
ity of agents based both on average returns and ex-
ploitability. We then show that several RL, online
learning, and language model approaches can learn
good counter-strategies and generalize well, but ul-
timately lose to the top-performing bots, creating
an opportunity for research in multiagent learning.

1 Introduction
How should agents be evaluated when learning with other
learning agents? One metric is simply the average return
over an agent’s lifetime. Another is the agent’s robustness
against a potential nemesis whose goals are only to minimize
the agent’s return. The first is the conventional metric used in
the evaluation of reinforcement learning (RL) agents, while
the second is quite common among game-theoretic AI tech-
niques for imperfect information games. In this paper, we
argue our position that neither of these is generally sufficient
in isolation: good agents should both maximize return and be
robust to adversarial attacks.

The classical method to demonstrate superior AI perfor-
mance is head-to-head matches, or direct comparisons of
average return, against the strongest known agents. This
method has driven progress of the field since the begin-
ning: from Samuel’s checkers program, to chess, Go, poker,
modern real-time games, and so on. On the other hand,
game-theoretic approaches to learning result in agents that
approximately respond to a population of opponents which
are enumerated in hopes that the full strategic complex-
ity of the game is captured among the set of opponents,

and convergence to an approximate Nash equilibrium is ob-
tained. The extent to which current AI systems are robust
to adversarial attacks is unclear. Nevertheless, there is ev-
idence that even expert level AI agents can be demonstra-
bly susceptible to adversarial behavior [Timbers et al., 2022;
Wang et al., 2022]. While current evaluation methodologies
over-emphasize the single metric of cumulative reward or per-
formance against experts, human or AI, we argue that the
more important problem is the lack of benchmarks that pri-
oritize the evaluation of agents in a more general way, where
multiple metrics could lead to a better understanding of an
agent’s capabilities.

In this paper, we propose a benchmark based on the clas-
sical game of Rock, Paper, Scissors augmented in two ways:
first, it is a repeated game and hence a sequential decision-
making problem; second, performance is measured against
a population of agents with varied skill. The simplicity of
the stage game is of paramount importance: it is a well-
understood two-player zero-sum game whose game-theoretic
optimal strategy is well-known, and by construction maxi-
mizing rewards against fallible opponents naturally leads to
behavior that is potentially exploitable. For learning agents
to find exploits in the opponents, they must correctly de-
duce their strategies from observations. We describe a pop-
ulation of forty-three openly-available hand-crafted agents
that were submitted to competitions and characterize their
head-to-head performance, exploitability, and the extent to
which they are predictable (by supervised learning). We
then train agents using several modern approaches with dif-
ferent capabilities, against the population and independently
trained against copies of themselves. These approaches show
promise in various ways: out-of-distribution generalization of
exploitative behavior, a clear lack of exploitable behavior, and
a good balance between these two metrics. Ultimately, none
of the agents are able to outperform the top two participants
in head-to-head matches while being more robust to exploits,
leading to a challenge and opportunity for novel multiagent
reinforcement learning research.

2 Repeated Rock, Paper, Scissors
In this section, we describe the basic notations, the envi-
ronment, competition and participants, and population-based
evaluation. The environment and population are freely avail-
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Player 0

Player 1
R P S

R (0, 0) (1,−1) (−1, 1)
P (1,−1) (0, 0) (−1, 1)
S (−1, 1) (1,−1) (0, 0)

Figure 1: Rock, Paper, Scissors. Player 0 chooses an action assigned
to a row, and similarly player 1 for a column. Each entry shows the
reward for player 0, then player 1 respectively.

able within OpenSpiel [Lanctot et al., 2019].

2.1 Notation and Environment Description
A normal-form game has a discrete set of players N =
{1, 2, · · · , n}. A matrix game is a two-player game with a set
of actions per playerA1 andA2, a joint action setA = A1×
A2, and utility functions for each player i ∈ N , ui : A → <.
A zero-sum game is one where ∀a ∈ A,

∑n
i=1 ui(a).

Rock, Paper, Scissors (RPS), also called RoShamBo, is a
two-player zero-sum matrix game described by the matrix de-
picted in Figure 1: Rock (R) beats Scissors (S), Paper (P)
beats Rock (R), and Scissors (S) beats Paper (P).

The sequential version is repeated: there are K identi-
cal plays of RPS. At state s0, agents simultaneously de-
cide their actions and agent i receives intermediate re-
ward rt,i by joint action at composed of all agents’ ac-
tions combined and payoff matrix in Figure 1. A trajec-
tory is a state and (joint) action sequence of experience:
ρ = (s0, a0, s1, a1, · · · , sK−1, aK−1, sK). In this environ-
ment, every episode has length K and the full (undiscounted)
return is defined asG0,i =

∑K−1
t=0 rt,i. We chooseK = 1000

as a default from the competitions described in Section 2.2.
Similarly to previous work in this environment [Hernandez

et al., 2019], observations to the agent depend on the recall,
R. With a R = 1, the observation at st includes the most
recently executed joint action at−1, encoded as a 6-bit obser-
vation (two one-hot actions). With R = 2, the observation
includes the two most recent join actions, and so on, where
R = K includes the full action sequence. For example, when
R = 10 there are 910 ≈ 3.5 billion unique observations; a
tabular Q-learning agent would a table of 10.5 billion entries.
Unless otherwise noted, use R = 1 as a default value.

Finally, as is standard [Sutton and Barto, 2017], a policy
πi is a mapping from an observation to a distribution over ac-
tions used by agent i, and π (without subscripts) is the joint
policy used by both agents. In RPS, there is a large incen-
tive to use stochastic policies because any deterministic pol-
icy is fully exploitable [Shoham and Leyton-Brown, 2009].
For simplicity of notation, we denote Gt,i,π = Ea∼π[Gt,i].

2.2 Competition and Participants (Bots)
In early 2000s, Darse Billings ran two Repeated Rock, Pa-
per, Scissors (RRPS) competitions [Billings, 2000a; Billings,
2000b]. In this subsection, we describe the participant entries
that were released and still openly accessible, which have
since been integrated into OpenSpiel [Lanctot et al., 2019].

In each competition, participants were asked to submit a

bot1 to play RRPS, with K = 1000, all played within a one-
second time limit. Each program had full recall, the entire
action sequence in each episode, but nothing more that would
identify the other bots. Participants were told in advance that
the population would include some sub-optimal bots.

The majority of the entries in the competition were hand-
crafted heuristic bots that were developed independently by
different programmers. A few participants submitted two en-
tries. The resulting population consists of 43 bots: 25 entrant
bots and 18 seed bots from the first competition. Including the
winner of the second competition Andrzej Nagorko’s GREEN-
BERG, made open-source seperately, and the first competition
winner Dan Egnor’s IOCAINEPOWDER.

We now summarize the approach taken by most bots. The
simplest seed bots do not use their observation to inform their
action. RANDBOT generates an action uniformly at random.
ROCKBOT always plays rock. R226BOT plays 20% rock, 20%
paper, 60% scissors. ROTATEBOT rotates between R, P, S in
that order. PIBOT, DEBRUIJN81, TEXTBOT all play a fixed
sequence of actions derived from the digits of pi, De Bruijn
sequences, and the competition rules in base 3, respectively.

Other seed bots have a recall R = 1, i.e. they use only
the current observation. SWITCHBOT never repeats its’ previ-
ous action, and chooses uniformly between the two alterna-
tives. SWITCHALOT repeats previous action with 12% proba-
bility; otherwise, chooses uniformly between the two alterna-
tives. COPYBOT plays to beat the opponent’s previous action.
DRIFTBOT and ADDDRIFTBOT2 bias their action by the op-
ponent’s action or joint-action, respectively, with an increase,
or “drift”, in bias over time. FOXTROTBOT alternates between
playing randomly, and an offset of its’ previous action.

The remaining seed bots used historical observations either
directly or through statistical summaries. FLATBOT3 plays a
flat distribution. ADDSHIFTBOT3 biases decision by previous
joint action, shifting the bias if losing. ANTIFLATBOT maxi-
mally exploits FLATBOT3. ANTIROTNBOT exploits rotations
played by the opponent. FREQBOT2 plays to beat opponent’s
most frequent choice.

The entrant’s bots also used historical observations.
ROBERTOT uses a voting algorithm informed by observa-
tion counts. PREDBOT, PIEDRA, and SWEETROCK predict
play from action counts. MOD1BOT models the opponent
as PREDBOT. BIOPIC maintains four prediction models dif-
fering in available information. MARKOV5, MARKOVBAILS,
RUSSROCKER4, and HALBOT inform their prediction with
Markov chain models. PHASENBOTT, PETERBOT, MULTI-
BOT, and MIXED STRATEGY all switch between a fixed set
of policies depending on which is currently the most prof-
itable. INOCENCIO, ZQ MOVE, MARBLE, GRANITE, BOOM,
and SHOFAR also implement complex rule-based decisions
informed by summary statistics of the history.

Several bots took very innovative approaches. SUN-
NERVEBOT implemented a “nervous” network reminiscent of
a deep neural network. ACTR LAG2 DECAY implemented the
cognitive architecture ACT-R [Anderson, 1993].

IOCAINEBOT [Egnor, 2000], which won the first competi-

1In this paper, “bot” always refers to a previous competition par-
ticipant, whereas “agent” refers to an RRPS player more generally.
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greenberg
iocainebot

phasenbott
halbot

mod1bot
biopic

robertot
russrocker4

boom
predbot

shofar
granite
marble

actr_lag2_decay
sweetrock

piedra
sunNervebot

zq_move
antirotnbot

mixed_strategy
markovbails

markov5
multibot

inocencio
debruijn81

pibot
randbot

adddriftbot2
driftbot

foxtrotbot
flatbot3
textbot

addshiftbot3
switchalot

sunCrazybot
switchbot
peterbot
r226bot
freqbot2
copybot

rotatebot
rockbot

antiflatbot

1000 750 500 250 0 250 500 750 1000

Figure 2: RoShamBo bots payoff table. Each cell shows the average
return per episode for the row bot versus the column agent.

tion, works by maintaining a set of predictions about its oppo-
nent, and building a set of strategies from each predictor. Pre-
dictions included random guessing, frequency analysis, and
history matching across six different history sizes. From each
prediction six strategies are constructed based on recursive
response computations (e.g., triple-guessing). IOCAINEBOT
then plays the most historically successful strategy. GREEN-
BERG, by Andrzej Nagorko, won the second competition by
extending IOCAINEBOT to include additional predictors uti-
lizing more advanced history matching algorithms.

2.3 Population-Based Evaluation
We propose several ways to use this population to evaluate
agents. We define an agent’s POPULATIONRETURN to be the
average return per episode against a bot drawn uniformly at
random at the start of the episode. Performance against spe-
cific bots can also be reported; we compute the cross-table
between all bots in Figure 2 below. The exploitability of an
agent i is by how much their nemesis (best response) beats
them. Let −i refer to agent i’s opponent. Then,

EXPL(πi) = G0,−i,(πi,b(πi)), where b(πi) ∈ BR(πi), and

BR(πi) = {π−i|G0,−i,(πi,π−i) = maxπ′−i
{G0,−i,(πi,π′−i)

}}
is the set of best responses to πi. Notice that exploitability is
expressed in the opponent’s return; it is non-negative and its
lowest value is zero when an agent is not exploitable. How-
ever, due to the maximization over the entire policy space, it
can be too computationally expensive to compute exactly, so
we can approximate it by running several learning algorithms
and taking the maximum achievable value. Another measure

of approximate exploitability uses the bots as exploiters, tak-
ing the maximum over the bots, where P is the population:

WITHINPOPEXPL(πi) = max
π−i∈P

Ea∼(πi,π−i)[G0,−i].

Head-to-head performance of all bots in the population
is visualized in Figure 22. Each cell represents an aver-
age over 1000 episodes. Figures 3 and 4 summarize some
properties of the population. First, the population returns
of each bot range from −648.42 to 288.15, achieved by
GREENBERG. GREENBERG dominates (achieves higher value
against all opponents) five bots, and IOCAINEBOT domi-
nates one bot. Second, the within-population exploitabili-
ties range from 1.2 (RANDBOT) to 1000, with several reach-
ing this upper-bound, 316.1 on average. We then trained
several RL algorithms until empirical converges (millions of
episodes) against each bot independently: Q-learning and
IMPALA [Espeholt et al., 2018] with R ∈ {1, 3, 5, 10}, and
defined the external-learned exploitability of that bot as the
maximum value achieved among these eight. These val-
ues range from 4.8 to 1000.0, with an average of 420.3.
The within-population exploitability achieves 75.2% of the
external-learned exploitability on average, and varies be-
tween 50-100% of the external-learned exploitability on most
bots. Due to this consistency across bots and significantly less
computation requirements, we mainly use within-population
exploitability from here on.

One simple way to rank agents under both metrics is to as-
sume they both matter equally: AGGREGATESCORE(πi) =
POPULATIONRETURN(πi) −WITHINPOPEXPL(πi). Under
this metric, we list the top 10 bots in Table 6. The complete
ranked list is given in Appendix A.1. For reference, we also
include the scores of the best learning algorithm in each cat-
egory from Secton 4.

Bot Names Pop. Return W.P. Expl Agg. Score
GREENBERG 288.15 3.65 284.50
IOCAINEBOT 255.00 5.00 250.00

BIOPIC 196.36 36.66 159.70
BOOM 169.11 27.93 141.19

SHOFAR 152.01 16.87 135.14
ROBERTOT 177.77 50.16 127.61

PHASENBOTT 232.25 111.71 120.54
MOD1BOT 203.16 90.16 113.00

SWEETROCK 146.25 41.21 105.04
PIEDRA 146.08 41.44 104.64

Alg. Names Pop. Return W.P. Expl Agg. Score
PopRL 258.00 10.98 247.02
LLM 201.0 45.8 155.20

ContRM 164.77 16.27 148.51
QL (R = 10) −0.52 8.62 8.10

R-NaD [−10, 5] [20, 40] [−50,−25]

Table 1: Top 10 bots ranked by AGGREGATESCORE, and top learn-
ing algorithms in each category from subsections of Section 4.

2This table can be found in OpenSpiel [Lanctot et al., 2019].
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Figure 3: Population Returns for each bot.

3 Predictability of RPS Bots
In order to win at RRPS, the bots must attempt to predict the
actions chosen by other bots, while not becoming predictable
themselves by their opponent. In this section, we investigate
to what extent the bots are predictable by a neural network.

To assess how predictable each bot was, we sampled games
of RRPS between the bot and each other bot, including itself.
We trained an LSTM per bot to predict that bot’s next ac-
tion with recall R = 20 (details in App. A.4). We report the
prediction accuracy, i.e. the proportion of the time that the
predicted action matched the bot’s action, shown in Fig. 5.

Some bots are deterministic and easy to predict, e.g.
ROCKBOT was predicted correctly 100% of the time.
Stochastic bots, such as RANDBOT, have low predictability,
but this comes at the cost of their ability to exploit other bots.
Prediction accuracy for the entrants was substantially greater
than for the Nash equilibrium, but varied substantially from
48% for MARKOVBAILS to 94% for PETERBOT.

Successful action prediction reveals the existence of struc-
ture within the bot population. In principle, RRPS is a purely
non-transitive game, and there is no such thing as a ‘better’
strategy. Under a unique Nash equilibrium, an agent’s past
actions are not predictive of their future actions. Still, we hy-
pothesize that it is possible to learn action predictions from a
sub-population that generalise to the whole population.

To test this, we sample 30 bots from the population ran-
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Figure 4: Approximate exploitabilities for each bots.
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Figure 5: Action prediction accuracy. Cells show the action predic-
tion accuracy for the row bot vs a column co-player.



co-player
train test

predicted bot train 69.14% 67.35%
test 57.80% 55.65%

Table 2: Action prediction accuracy.

domly, and generate RPS games between these bots. We then
train the same LSTM model as before to predict the bots’
actions. To succeed at this task, the agent must identify the
strategy a bot is employing to predict the next action as it no
longer knows the bot identities a priori. This also means that
if held-out bots employ similar strategies, the agent should be
able to predict their actions too. We repeated the experiment
10 times with different splits of training/testing bots.

On games between the training bots, the neural network
achieved an average accuracy of 69.1%. In games between
the held-out test population, the neural network achieved an
accuracy of 55.7%, which is significantly better than chance,
and demonstrates there is learnable structure in the bot be-
haviours. In Table 2, we break down accuracy by whether the
bot being predicted or the co-player are in the training popula-
tion. We show that prediction accuracy drops for either bot or
co-player being from the held-out population, but the effect is
larger when the bot being predicted is not in the training set.

4 Learning to Play Repeated RPS
Can an agent learn to earn high population return and not
be very exploitable? Here, we show baselines and RL agent
performance on this environment. We evaluate them using
the population-based evaluation (PBE) criteria in Section 2.3.

4.1 Baseline Independent RL Results
In this section we report the performance of fixed policies
and baseline RL agents. Each individual run reports the best
achieved performance of an fixed agent or one trained by
playing against another copy of an agent of the same type (in-
dependent RL). Note that we differentiate this training from
“self-play” due to the agents using the same algorithm but
separate networks. We then evaluate the agents against the
population after 700k - 1M episodes of training, with the pop-
ulation return and returns of each bot against the agent being
averaged over a sliding window of the 50 most recent evalua-
tions. Each reported value represent the the average over five
individual runs using different seeds Table 3.

The fixed players have no hyper-parameters except the
seed. For Q-learning, we swept over learning rates α ∈
{0.001, 0.02, 0.01} and R ∈ {1, 3, 5, 10}. We observed
that while different learning rates had differently-shaped
curves, that ultimately the differences were small (with
α = 0.02 working best); on the other hand, the amount
of recall made a significant difference. Interestingly,
the within-population exploitability of uniform is greater
than zero, which is possible to due to maximization over
noisy estimates and the deterministic nature of the ran-
dom number generators. In addition, we run DQN [Mnih
et al., 2015], A2C [Mnih et al., 2016], and Boltzmann
DQN [Cui and Koeppl, 2021] with various temperatures.

Name P. Return W.P. Expl Agg. Score
ROCK −610.2 1000.0 −1610.2
PAPER −613.5 999.20 −1612.7

SCISSORS −648.1 1000.0 −1648.1
UNIFORM 0 9.31 −9.31

QL (R = 1) −531.28 994.54 −1525.82
QL (R = 3) −280.65 910.56 −1191.21
QL (R = 5) −89.67 405.89 −495.56
QL (R = 10) −0.52 8.62 8.1

DQN −194.49 693.13 −887.62
BDQN (η = 0.1) −124.52 515.60 −640.12
BDQN (η = 0.5) −19.59 164.25 −183.84
BDQN (η = 1) 18.00 51.93 −33.93
BDQN (η = 2) 12.75 11.20 1.55

A2C 0.18 9.84 −9.66

Table 3: Baseline bots and agent performance.

For DQN and BDQN we swept over hyper-parameters
batch size ∈ {32, 128}, R ∈ {1, 3, 5}, learning rate ∈
{0.02, 0.01, 0.001}, replay buffer capacity ∈ {105, 106}. For
A2C we swept over hyper-parameters R ∈ {1, 3, 5}, λ ∈
{0.99, 0.9, 0.75}, entropy cost ∈ {0.01, 0.003, 0.001}, pol-
icy learning rate ∈ {0.0002, 0.0001, 0.00005}, critic learning
rate ∈ {0.0001, 0.0002, 0.0005}. In all cases, networks were
two-layer MLPs with layers of size (256, 128) and ReLU ac-
tivations except the final output layer. Overall we found that
the algorithms improve as R increases, achieving a popula-
tion return of at most 18, and can be particularly exploitable.
The high exploitability is somewhat mitigated by a suffi-
ciently large (R = 10) table in Q-learning, higher temper-
ature in Boltzman DQN, and entropy bonuses in A2C. The
best achievable aggregate score across these baselines is 8.1.

4.2 Language Model Agent
Large language models (LLMs) have achieved state-of-the-
art performance across a wide variety of natural language
processing tasks. This is accomplished by simple token-level
training objectives, applied to massive amounts of text data
scraped from the web. LLMs can be further fine-tuned on
specific tasks, and have been successfully utilized as compo-
nents in game-playing systems, most notably Cicero which
achieved human-level performance in Diplomacy [(FAIR) et
al., 2022]. Even without fine-tuning, LLMs demonstrate
some game-playing ability like finding legal chess moves,
but exhibit poor performance at identifying checkmate-in-one
moves [Srivastava et al., 2022].

Here we benchmark four model sizes (400M, 1B, 7B, 70B)
from the Chinchilla family of LLMs [Hoffmann et al., 2022]
on the RRPS task. We utilize the LLM as a game-playing
agent by selecting actions based on the model’s prediction
of what action the opponent will play next. The model is
given a zero-shot prompt that plainly states the task and pro-
vides the game history (see Appendix A.2 for full prompt).
The model’s prediction of the opponent’s next action is deter-
mined by choosing the max over the logprobs of the tokens
{R, P, S}. The LLM agent then deterministically plays
the action that beats the opponent’s predicted action. The



true actions played are appended to the prompt and the pro-
cess is repeated. No parameters are fine-tuned at any point.
Methodologies for prompting and fine-tuning LLMs and inte-
grating them into larger systems are areas of active research,
and optimizing the LLM’s performance on RRPS is beyond
the scope of this paper. However, even in this simple zero-
shot setting, and despite not having been trained on RRPS,
LLMs demonstrate a surprising ability to to predict oppo-
nent actions that improves with model size. Chinchilla 70B
achieves an average population return of 201.0 and aggregate
score of 155.2, placing it fourth behind only GREENBERG,
IOCAINEBOT, and BIOPIC; though, we did notice that size
of the model size had a significant effect on the performance:
our smallest model achieves an aggregate score of −212.9
in comparison (see Appendix A.2 for full results). Domain-
specific fine-tuning would likely yield improvements and of-
fers a promising direction for progress on this benchmark.
Moreover, RRPS also offers a measure of an LLM’s capac-
ity for identifying and adapting to members of a population it
interacts with.

4.3 Regularized Nash Dynamics
To minimize the exploitability (i.e. thus converging to a Nash
equilibrium), a solution that empirically scale well is to learn
a policy with the Regularized Nash Dynamics (R-NaD) al-
gorithm [Perolat et al., 2022]. In a nutshell, this method
repeat a 3 step process: 1) building a reward transforma-
tion based on a regularisation policy, 2) a step where the
process converges to a new fixed point of the game and 3)
update the regularization policy with the fixed point found
at step 2). With R = 1, R-NaD achieves Pop. Return
in the set [−10,−5], W.P. Expl in the set [20, 40] and an
Agg. Score in the set [−50,−25] which is not far away from
what the random policy achieves. The implementation used
to produce these results uses the OpenSpiel implementation
of R-NaD [Lanctot et al., 2019]. We used the parameters
from the open-source implementation and did a sweep over
the following parameters (randomized over 5 seeds): η re-
ward transform : [0.1, 0.2, 0.3, 0.4, 0.5, 0.6], trajectory max :
10, 000, 000, batch size : [64, 128, 256, 512], entropy sched-
ule size : (20000, ), finetune from : [−1, 300000, 600000].

This algorithm achieves a strategy that is hard to exploit
but it will not exploit the other players.

4.4 Contextual Regret Minimization
One natural choice for making decisions in an online learn-
ing problem is using an algorithm which minimizes regret.
These algorithms all have theoretical guarantees that their av-
erage expected online performance is close to some optimal
baseline, in hindsight. For example, an algorithm which min-
imises external regret is expected to do roughly as well any
single static action a, if we looked back in time and asked
how well we would have done if we had played a instead.

We look at four different algorithms for bandits with
full information feedback, with different regret guarantees.
Regret Matching (RM) is a simple, parameter-free algo-
rithm which minimises external regret [Hart and Mas-Colell,
2000]. Regret Matching+ (RM+) is a modification of RM
that often has better empirical performance [Tammelin et

al., 2015]. RM+ also has a weak guarantee with respect
to k-switching regret, which compares performance to all
possible k-piecewise policies. The strongly adaptive on-
line learner (SAOL) provides a strong guarantee for non-
stationary environments, with a performance bound on any
sub-interval [Daniely et al., 2015]. SAOL is a meta-algorithm
operating on top of another regret minimizing algorithm, and
we used RM+ for the base algorithm in our implementation.
Minimizing swap regret ensures that an agent would not have
wanted to play action a any time in the past when they had
played b, for any actions a and b. For swap regret, we used
the meta-algorithm of Ito [Ito, 2020] on top of RM+.

While these four algorithms depend on the history – the
historical actions played determine the current policy – they
do not explicitly consider the current context (R = 0). One
way to frame RRPS as a contextual regret minimization prob-
lem is to completely separate each possible recalled history
for R > 0 into separate contexts, with independent regret
minimizing algorithms running in each context. An agent us-
ing this discrete set of contexts has 9, 81, and 729 independent
instances forR = 1,R = 2, andR = 3 respectively. Another
way to add context is to instead augment the environment ac-
tions with context experts that suggest environment actions.
For R = 1, we added six experts suggesting the opponent’s
last action o, our last action u, the actions that beat o and u,
and the actions that lose to o and u.

Agent Pop. Return W.P. Expl Agg. Score
R = 0

RM 48.45 27.39 21.06
SAOL 67.3 34.73 32.57
RM+ 59.66 26.36 33.3

SWAP-RM+ 62.73 21.96 40.77
R = 1

SAOL 178.08 91.32 86.76
RM 164.75 76.3 88.44

RM+ 169.88 63.99 105.89
SWAP-RM+ 167.99 48.41 119.58
R = 2

SAOL 171.46 155.39 16.07
RM 175.43 148.89 26.54

RM+ 174.44 121.79 52.65
SWAP-RM+ 173.52 99.93 73.59
R = 1 history experts

RM 157.55 23.92 133.62
RM+ 157.99 17.51 140.48

SWAP-RM+ 156.93 15.69 141.24
SAOL 164.77 16.27 148.51

Table 4: Performance of regret minimizing agents.

4.5 IMPALA and Generalization
In this subsection, we try a more modern implementation
of a policy gradient algorithm that allows for bootstrapping
and recurrent neural networks: Important-Weighted Actor-
Learner Architectures (IMPALA) [Espeholt et al., 2018]. IM-
PALA is a synchronous variant of (batched) A2C which uses



importance-weighted corrections for its value function esti-
mates, and has been show to work on visual environments
such as the Atari suite [Bellemare et al., 2013] and at scale.

Specifically, we adapt the implementation provided in
Haiku [Hennigan et al., 2020] to online (batched) agent con-
sistent with the other agent implementations in OpenSpiel.
We run two IMPALA agents against each other, similarly to
the baselines in Section 4.1, sweeping over hyper-parameters
policy learning weight ∈ {0.001, 0.0004, 0.0001}, entropy
cost ∈ {0.01, 0.003, 0.001}, unroll length ∈ {20, 50, 100},
andR ∈ {1, 3, 5}. For IMPALA we use a basic recurrent net-
work with two hidden layers of size (256, 128) followed by
an LSTM layer of size 256. After 600k episodes of training,
the best population return and within-population exploitabil-
ity achieved by this agent was 16.43 and 9.3, respectively (in
both cases when R = 1) for an aggregate score of 7.13.

IMPALA as a General Bot Exploiter Agent
Since IMPALA was designed to be a single-agent algorithm
and was unable to significantly improve over the baseline al-
gorithms, we now verify its ability to act as an approximate
best response (“exploiter”) agent when playing against the
population. In this setup, a new opponent bot is uniformly
sampled at the start of each episode to play against the IM-
PALA agent. By using similar hyper-parameter sweeps as
before, we find a small set of good hyper-parameters (learn-
ing rate 0.0004, entropy cost 0.003, and vary only the unroll
length ∈ {20, 50}). In this case, we find IMPALA can con-
sistently reach a population return of 220 after 200k episodes,
which is significantly higher than the independent RL setting.

One benefit of PBE is the ability to assess the capacity of
an agent to generalize. In particular, we evaluate the ability of
an IMPALA exploiter agent against bots that it has not trained
to exploit. We apply cross validation over bot opponents: IM-
PALA trains against 33 agents, and evaluates only against the
left-out set of 10 agents. We average the performance over 50
distinct sets of 10 left-out opponents. IMPALA consistently
reaches an average of 120-130 per episode against the left-out
bots, a significant drop compared to when training and testing
opponent distribution are identical.

To investigate whether the generalization ability can be im-
proved, inspired by UNREAL [Jaderberg et al., 2017], we
augment the network and training procedure with an auxil-
iary task of opponent prediction. A new output head is added
that predicts which specific opponent bot the agent is facing,
and a standard classification loss is added to the combined RL
loss with some prediction weight ρ ∈ {0.001, 0.01, 0.1, 0.5}.
The results are shown in Figure 7 (in Appendix A.3). We ob-
serve that opponent identification helps, and improvements
get are better with higher ρ. We also measure the average
difference of the area-under-the-curve (interpreted as popula-
tion return advantage per episode) between ρ = 0.5 and the
baseline ρ = 0), achieving 12.94, 15.81, 13.00, and 11.05
at training episodes 25k, 50k, 100k, and 175k, respectively.
The advantage diminishes slightly over time but maintains a
significant positive advantage well into the training run.

PopRL: A Hybrid Population-Based Training Algorithm
We now propose a new general training algorithm (“Pop-
ulation RL” in constrast to “IndRL”) based on IMPALA
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Figure 6: Aggregate score achieved by PopRL.

with opponent identification. Inspired by Restricted Nash
Response [Johanson et al., 2008] and game-theoretic
population-based approaches [Lanctot et al., 2017; Hernan-
dez, 2022; Strouse et al., 2021], PopRL mixes between best
responding to itself and to population members. Rather than
train against the bot population only, a PopRL agent trains
against an augmented population containing the 43 bots and
an identical copy of another PopRL agent that is also inde-
pendently training (concurrently or alternately). At the start
of each episode, with probability p the opponent is set to be
the other PopRL agent, or (with probability 1− p) it is set to
a uniformly sampled bot. In both cases, the agent uses oppo-
nent identification auxiliary task, but unlike before the num-
ber of classes is one greater to include identifying the other
PopRL learning agent (44 instead of 43). The motivation is
to leverage the population to train a generalist agent, while
still guarding against being exploited by a similar learning
agent. Results are shown in Figure 6. The best combina-
tion of hyper-parameters is able to achieve an aggregate score
of 247.02, placing PopRL just behind IOCAINEBOT and far
above BIOPIC, between second and third ranks. In addition,
we show how the best PopRL agent scores against individual
bots compared to GREENBERG in Figure 8 (Appendix A.3):
while they score similarly on many of the agents in the popu-
lation, they differ significanlty against several bots.

5 Conclusion and Future Extensions
We propose repeated Rock, Paper, Scissors, a population of
previous tournament bots, and population-based evaluation
as new challenge in sequential decision-making with multi-
ple agents. The bots range widely in terms of population re-
turn, exploitability, and predictability. Several standard Deep
RL baseline algorithms, that have attained human-level per-
formance on various challenge domains, fail to achieve both
high reward and to be robust to a population of RRPS bots.

We show that an LLM agent is able to achieve an aggregate
score of 155.2, significantly higher than most baseline RL al-
gorithms. The best agent trained via self-play (a contextual
regret minimizer using SAOL) achieves an aggregate score
of 148.51. When training against the population, IMPALA is



able to to leverage opponent identification to learn general re-
sponses, and when combined with population-based training,
achieves a high aggregate score of 247.02; but, even with the
added information, it was unable to defeat the top two bots.

There are several avenues of potential future work. Firstly,
different and larger populations (some are openly avail-
able [Knoll et al., 2011]). Secondly, a more complex exten-
sion would be to introduce a continual version of RRPS with a
dynamic population that can introduce or remove agents over
time. Finally, it could be interesting to see population-based
evaluation methods applied to larger extensive-form games.
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A Additional Results
In this appendix, we give supplemental results referred to in
the main text.

A.1 Full Ranking of Bots
The performance and full ranking of bots in the population is
given in Table 5.

A.2 Language Model Agent
Language model prompt after two rounds of RRPS:

A repeated game of rock, paper, scissors
is being played.
Guess the next move based on the game
history.
Game history (player1, player2):
R,P
P,S

Minor variations in the prompt did not significantly impact
performance. The scores are shown in Table 6.

A.3 IMPALA Agent
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Figure 7: Population return over held-out opponents when IMPALA
is trained as an exploiter agent..

A.4 Behavioral Cloning
To access the extent to which the bots are predictable, we
train action-prediction models that predict the bot’s next ac-
tion based on the full game history. We investigate three types
of action-prediction models:

• Individual: a model trained to clone a single agent’s be-
havior against the full population.

• Population: a model trained to the full population’s be-
havior against the full population.

• k-Fold: a model trained to clone a fold (nin=30) of the
population, and is also evaluated for generalization on
the held-out population (nout = 13).

Hereafter, the sub-population being modelled is referred to
as the demonstrator population/individual (e.g., in the case
of the Individual model, it is the singleton bot). Common
to all of the models is that the identity of the bots are never
revealed.

Figure 5 shows results for the case in which a separate
LSTM is trained per bot. In Figure 9 we compare average
action prediction accuracy of individual LSTM models to a
single LSTM model trained to predict next actions for a ran-
domly sampled bot from the full population of 43 bots.
Training The models are trained with a behavioral cloning
objective that maximize the action-prediction model’s like-
lihood of playing a demonstration action (from the bot).
Demonstration data is generated dynamically by uniformly
sampling a demonstrator and co-player. Note, that the co-
player is sampled uniformly from the full population for bot
the Individual and Population models, but is sampled only
from the within-fold population for the k-Fold model. Data is
generated in parallel by 20 processes populating a temporary
data buffer that is uniformly sampled to prevent correlation in
complete batches from the same strategy profile. The training
batches contain 128 sub-trajectories of length 20 providing a
limited recall during training, but during evaluation full recall
can be maintained within the learned memory. Each model is
trained for 1B frames corresponding to 1M episodes.
Evaluation The trained models are fixed and their pre-
dictability is measured by their agreement with a demonstra-
tor playing 100 episode for each unique profile (across both
demonstration- and co-player-bots). Agreement is measured
by average action accuracy across all episodes.
Model Implementation The models are implemented with
a 2-layer LSTM with sizes [64, 64]. The output of final layer
of the LSTM is projected into action space by an 3-layer
fully-connected neural network with sizes [64, 32, 3].



Rank Bot Name Pop. Return W.P. Expl Agg. Score
1 GREENBERG 288.153 3.648 284.505
2 IOCAINEBOT 255.003 5.006 249.997
3 BIOPIC 196.365 36.665 159.700
4 BOOM 169.119 27.928 141.191
5 SHOFAR 152.008 16.865 135.143
6 ROBERTOT 177.767 50.154 127.613
7 PHASENBOTT 232.245 111.708 120.537
8 MOD1BOT 203.162 90.158 113.004
9 SWEETROCK 146.250 41.207 105.043

10 PIEDRA 146.080 41.441 104.639
11 MARKOVBAILS 111.192 17.601 93.591
12 SUNNERVEBOT 138.054 45.490 92.564
13 MARKOV5 111.186 18.720 92.466
14 ANTIROTNBOT 121.387 58.616 62.771
15 HALBOT 212.429 176.229 36.200
16 MIXED STRATEGY 114.131 83.488 30.643
17 RANDBOT 0.234 1.197 −0.963
18 PIBOT 4.516 81.000 −76.484
19 ACTR LAG2 DECAY 146.319 236.865 −90.546
20 MARBLE 148.661 240.988 −92.327
21 GRANITE 149.252 241.840 −92.588
22 PREDBOT 167.112 267.687 −100.575
23 ZQ MOVE 124.799 368.744 −243.945
24 MULTIBOT 56.057 307.065 −251.008
25 TEXTBOT −73.394 185.000 −258.394
26 DEBRUIJN81 10.250 301.679 −291.429
27 DRIFTBOT −49.499 263.493 −312.992
28 ADDDRIFTBOT2 −41.855 283.910 −325.765
29 RUSSROCKER4 172.334 529.751 −357.417
30 SWITCHALOT −82.877 315.612 −398.489
31 ADDSHIFTBOT3 −78.117 342.420 −420.537
32 FOXTROTBOT −51.019 407.418 −458.437
33 FLATBOT3 −71.952 416.524 −488.476
34 INOCENCIO 17.616 579.868 −562.252
35 R226BOT −212.619 399.845 −612.464
36 SUNCRAZYBOT −83.609 578.089 −661.698
37 SWITCHBOT −173.178 497.182 −670.360
38 PETERBOT −174.238 927.986 −1102.224
39 FREQBOT2 −341.744 999.000 −1340.744
40 COPYBOT −475.327 997.000 −1472.327
41 ROTATEBOT −602.641 998.121 −1600.762
42 ROCKBOT −610.116 1000.000 −1610.116
43 ANTIFLATBOT −648.420 999.002 −1647.422

Table 5: The full ranking of bots in the population.



Chinchilla # params
Bot Name 400M 1B 7B 70B

AC L2 DECAY −123.3 −1.5 −28.0 −13.1
ADDDRIFTBOT2 27.5 52.4 82.4 89.7
ADDSHIFTBOT3 73.5 188.0 222.6 155.5

ANTIFLATBOT 995.0 995.6 991.4 992.6
ANTIROTNBOT 51.4 55.8 59.4 60.9

BIOPIC −193.5 −63.4 −52.8 −20.0
BOOM −65.7 10.4 −6.8 9.5

COPYBOT 981.0 981.0 983.0 979.0
DEBRUIJN81 −51.0 −11.0 −30.0 −20.0

DRIFTBOT 80.3 123.4 182.6 155.4
FLATBOT3 106.6 148.2 106.5 154.2

FOXTROTBOT −1.7 57.3 44.8 33.9
FREQBOT2 598.0 774.0 871.0 919.0

GRANITE −16.8 120.6 156.8 128.6
GREENBERG −305.9 −121.2 −108.6 −39.8

HALBOT −300.9 −145.6 −134.9 −8.9
INOCENCIO 449.3 337.6 793.1 382.1

IOCAINEBOT −323.0 −144.4 −148.7 −28.6
MARBLE 20.6 141.7 146.1 123.0

MARKOV5 −78.6 3.5 −14.4 −19.3
MARKOVBAILS −80.4 2.4 −10.9 −21.1
MIXED STRAT −15.4 31.2 34.0 57.4

MOD1BOT −206.9 −87.7 −76.2 −25.0
MULTIBOT 198.0 211.0 366.0 224.0
PETERBOT 652.1 815.2 831.0 846.2

PHASENBOTT −315.3 −174.7 −165.4 −45.8
PIBOT −2.0 −11.0 1.0 9.0

PIEDRA 42.4 42.8 44.4 44.7
PREDBOT −143.2 12.3 24.4 67.6
R226BOT 372.4 364.3 370.8 344.4

RANDBOT 1.1 3.4 6.3 −3.7
ROBERTOT −94.5 −8.6 3.0 −5.8
ROCKBOT 998.0 998.0 996.0 994.0

ROTATEBOT 983.0 992.0 995.0 1000.0
RUSSROCKER4 −234.4 −55.1 −55.8 −14.5

SHOFAR −80.2 −34.5 −23.6 −15.8
SUNCRAZYBOT 292.5 389.7 423.2 466.3
SUNNERVEBOT −141.3 −45.7 −37.0 −16.5

SWEETROCK 43.9 49.6 30.8 45.3
SWITCHALOT 116.5 123.9 115.1 154.5

SWITCHBOT 200.1 230.7 225.1 276.6
TEXTBOT 144.0 113.0 129.0 31.0
ZQ MOVE 80.4 154.9 196.2 196.1

POP. RETURN 110.1 177.2 198.6 201.0
W.P. EXPL 323.0 174.7 165.4 45.8

AGG SCORE −212.9 2.5 33.2 155.2

Table 6: LLM agent performance against bot population (avg over
10 runs).
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Figure 8: Population return of PopRL agent against individual bots compared to GREENBERG
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