No Press Diplomacy: Modeling Multi-Agent Gameplay

Philip Paquette, Yuchen Lu, Steven Bocco, Max O. Smith, Satya Ortiz-Gagne, Jonathan K. Kummerfeld, Satinder Singh, Joelle Pineau, Aaron Courville

Overview

We present **the first human-competitive system** for the seven-player, nonstochastic game Diplomacy. The game, shown below, requires agents to both collaborate and compete in order to win. We:

- Built a dataset of **150,000** games (available, NDA required).
- Developed a policy model for No Press Diplomacy.
- Explored training with **supervised learning** and **self-play**.
- Beat **state-of-the-art** rule-based agents.
- Ran a tournament against **almost 100 humans**.

Figure 1: Game Overview

Dataset

We trained using a mix of games with (106k) and without (33k) human communication on the standard map and 16,600 games on other maps.

									iaps.	Model	Accuracy per unit-order		Accuracy for all orders		
				Survival rate for opponents							WIOdel				
	Win%	Draw%	Defeated%	AUS	FNG	FRA	GFR	ΙΤΑ	RUS	TUR		leacher forcing (Jreedy	leacher forcing	Greedy
Austria	<u> </u>	33 4%	48.1%	100%	70%	62%	55%	40%	20%	15%	DipNet	61.3% 4	17.5%	23.5%	23.5%
England	4.6%	43.7%	40.170 29.1%	47%	100%	30%	16%	49%	33%	80%	Untrained	6.6%	6.4%	4.2%	4.2%
France	6.1%	43.8%	25.7%	40%	26%	100%	22%	45%	59%	77%	Without FiLM Masked Decoder (No Board)	60.7% 47.8% '	47.0% 26.5%	22.9% 14.7%	22.9% 14.7%
Germany Italy	5.3%	35.9% 36.5%	40.4% 40.2%	44% 15%	26% 65%	39% 56%	100% 61%	61% 100%	27% 56%	80% 25%	Board State Only	60.3%	45.6%	22.9%	23.0%
Russia	6.6%	35.2%	39.8%	25%	52%	77%	38%	63%	100%	42%	Average Embedding	59.9%	46.2%	23.2%	23.2%
Turkey	7.2%	43.1%	26.0%	9%	78%	71%	56%	23%	31%	100%	Table 2: Evaluation of sup	pervised models:	Predict	ting human orde	rs.
Total	39.9%	60.1%		37%	59%	65%	49%	51%	50%	64%					

Table 1: Dataset statistics

Data is available on request by contacting webdipmod@gmail.com.

S190	1M 🗢 🕞 Show orders
rria → →	A VIE - GAL (bounce) F TRI - ALB (OK) A BUD - SER (OK)
-AND→ →	F EDI - NWG (OK) F LON - NTH (OK) A LVP - YOR (OK)
ICE → →	A PAR - BUR (OK) F BRE - MAO (OK) A MAR - SPA (OK)
MANY→ →	F KIE - DEN (OK) A MUN - RUH (OK) A BER - KIE (OK)
/ → →	F NAP - ION (OK) A ROM - VEN (OK) A VEN - TYR (OK)
SIA → → →	F STP/SC - BOT (OK) A MOS - UKR (OK) A WAR - GAL (bounce) F SEV - BLA (bounce)
KEY → →	F ANK - BLA (bounce) A SMY - CON (OK)

DipNet: A Generative Model of Unit Orders

Figure 2: Architecture

We treat each location as a node and use a graph convolution network to process the map. We use conditioned batch normalization for information such as the current power, the season, and locations. Finally, we decode the unit orders per location and mask out impossible orders according to the game rules.

Results: Ablation Study

The best model is able to predict 61.3% of human orders correctly. Errors are more common in the late game and when there are a larger number of units to provide orders for.

Supp 1st locat 40.3% DipNet Board State Only 38.5% Without FiLM 40.0% Average Embedding 39.1%

Table 3: Comparison of the models' ability to predict support orders

port	Αςςι	iracy
tion	16^{th}	location
6	32	2.2%
0	2	5.9%
0	3	0.3%
0	2	7.9%

Results: SelfPlay and TrueSkill

We train DipNet with self-play using A2C, with the same model for all powers and shared updates. The supervised model performs better than rule-based agents, but there is no significant difference between the SL and RL models.

Agent A (1x)	Agent B (6x)	TrueSkill A-B	% Win	% Most SC	% Survived	% Defeated
SL DipNet	Random	28.1 - 19.7	100.0%	0.0%	0.0%	0.0%
SL DipNet	GreedyBot	28.1 - 20.9	97.8%	1.2%	1.0%	0.0%
SL DipNet	Dumbbot	28.1 - 19.2	74.8%	9.2%	15.4%	0.6%
SL DipNet	Albert 6.0	28.1 - 24.5	28.9%	5.3%	42.8%	23.1%
SL DipNet	RL DipNet	28.1 - 27.4	6.2%	0.3%	41.4%	52.1%
Random	SL DipNet	19.7 - 28.1	0.0%	0.0%	4.4%	95.6%
GreedyBot	SL DipNet	20.9 - 28.1	0.0%	0.0%	8.5%	91.5%
Dumbbot	SL DipNet	19.2 - 28.1	0.0%	0.1%	5.0%	95.0%
Albert 6.0	SL DipNet	24.5 - 28.1	5.8%	0.4%	12.6%	81.3%
RL DipNet	SL DipNet	27.4 - 28.1	14.0%	3.5%	42.9%	39.6%

Table 4: Results when playing different models against eachother.

- X-support-ratio: the fraction of support orders from a model that are attempting to support other agents.
- Eff-X-support-ratio: the fraction of X-support orders that succeed.

effectively as humans.

		X-support-ratio	Eff-X-support-ratio
Human Games	No Communication	14.7%	7.7%
	Public Comm.	11.8%	12.1%
	Public & Private Comm.	14.4%	23.6%
Agents Games	RL DipNet	9.1%	5.3%
	SL DipNet	7.4%	10.2%
	Board State Only	7.3%	7.5%
	Without FiLM	6.7%	7.9%
	Masked Decoder (No Board)	12.1%	0.62%

Human-Competitive

We hosted a tournament in collaboration with the website webDiplomacy. There were close to 100 participants, and 300 tournament games. In addition, over 4,200 games have been played with humans on the site.

- players won equally.
- endgame.
- The bots can get stuck in some positions that require careful coordination to disrupt the human position.
- The bots are very **loyal**, rarely backstabbing.

Come and play with the system on webdiplomacy.net!

- To probe variations in behavior, we consider agent collaboration:
- We find that the model is able to collaborate using support orders, but not as

 Table 5: Coalition Analysis

• Bots are reasonably strong, but **not yet human level**. Humans win 33%of games against six bots, much higher than the 14% we would expect if all

• The bots do well in the opening and mid-game, but struggle in the