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Strategy Exploration

This Work
- Problem: reinforcement learned policies require lots of data to train. 
- Data can be expensive to collect (e.g., human interactions / simulation).
- Experiential Cost: amount of data used to train policies.
- Game modelling computes a series of policies, each with high cost.

Context
- Games can be solved through empirical game models by proxy.
- Models are built by alternating game-reasoning and strategy exploration.

 

- Strategy Exploration: compute best-responses to current solution.
- Complex games make computing best-responses intractable.
- Reinforcement learning can be used to compute approximate responses.

 

- Solution: strategy exploration methods that utilize transfer learning.

Q-Mixing
- Idea: average Q-values following belief over opponents.

Running With Scissors

Prior: use opponent distribution as likelihood.

OPC: use evidence during play to inform likelihood.

Opponent-Policy Identification Game
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Effects of Averaging Q-values

Extras

PSRO Constructed Example

Reduce data costs of 
game learning by 
transferring value 
functions from previously 
learned policies.    
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Mixed-Oracles
- Insight: each player adds one new policy.
- Idea: learn best-response to new policy, and transfer the rest.

Mixed-Opponents
- Insight: aggregate opponent policies using Q-Mixing.
- Discovery strategically important policies faster, train less policies overall.
- Consider each policy’s value for all actions, giving rise to unique policy.
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