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Abstract— Wound surface area changes over multiple weeks
are highly predictive of the wound healing process. Further-
more, the quality and quantity of the tissue in the wound
bed also offer important prognostic information. Unfortunately,
accurate measurements of wound surface area changes are
out of reach in the busy wound practice setting. Currently,
clinicians estimate wound size by estimating wound width
and length using a scalpel after wound treatment, which is
highly inaccurate. To address this problem, we propose an
integrated system to automatically segment wound regions
and analyze wound conditions in wound images. Different
from previous segmentation techniques which rely on hand-
crafted features or unsupervised approaches, our proposed deep
learning method jointly learns task-relevant visual features and
performs wound segmentation. Moreover, learned features are
applied to further analysis of wounds in two ways: infection
detection and healing progress prediction. To the best of our
knowledge, this is the first attempt to automate long-term
predictions of general wound healing progress. Our method
is computationally efficient and takes less than 5 seconds per
wound image (480 by 640 pixels) on a typical laptop computer.
Our evaluations on a large-scale wound database demonstrate
the effectiveness and reliability of the proposed system.

I. INTRODUCTION
Currently, millions of patients are suffering from chronic

wounds, which results in billions of annual spending [20].
For diabetes-related foot ulcers alone, it has been estimated
that 38 billion dollars are spent caring for these patients in the
United States [6]. While the majority of costs are attributed
to hospital admissions and surgery, the majority of long-term
care costs are attributed to home care and social services [1].
Moreover, time-consuming quantitative wound assessments
are not always feasible due to the high volume of patients.
In this setting, accurate diagnosis and timely treatment will
highly rely on expertise and experience.

Advances in image processing and machine learning [14],
[4], [21], [19], [24] enable the analysis of wound images
by computer programs. Following this trend, recent work
has started to explore the fields of wound segmentation
and wound condition analysis. In [11], [12], [23], wound
segmentation was formulated as a foreground-background
classification problem and solved by regular classifiers (e.g.,
SVM [19]) with hand-crafted features. Attempts were also
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Fig. 1. Illustration of our proposed system. Given wound images, our
deep convolutional neural network model performs feature learning and
wound segmentation at the same time. Wound segments can be used to
estimate actual wound areas (with the scale information from the ruler ticks).
In addition, ConvNet visual features are used to assist wound condition
analysis (infection detection and healing progress prediction).

made in wound surface area estimation and healing progress
prediction [8], [15]. Although achieving good performance,
those models are highly dependent on hand-crafted features
and focus only on single tasks and small databases. To the
best of our knowledge, there is no unified framework for joint
wound segmentation and wound condition analysis which is
verified on large-scale databases.

To this end, we propose an integrated system based on
deep learning (see [2] for a survey) that simultaneously
performs wound segmentation and analysis. An overview of
our system is illustrated in Fig. 1. Given wound images as
inputs, the system first automatically segments the wound
region from the background by a novel variant of deep convo-
lutional neural network (ConvNet) [14]. From wound region
segments, actual wound surface areas are then calculated
with the scale information from the ruler ticks in wound
images. At the same time, learned ConvNet features are
used in (1) infection detection via SVM classifiers [19] and
(2) healing progress prediction via Gaussian process (GP)
regression [24]. Compared to previous segmentation methods
which require intermediate steps like image smoothing and
hand-crafted feature extraction, our end-to-end model simply
takes in raw images and produces final results. Moreover, it
has lower computational cost than existing ConvNet architec-
tures [16], [7]. The learned visual features with our proposed
model result in good performance for all three tasks.

In model training and evaluation, we adopted the NYU
Wound Database, a large-scale dataset with over 8000 high-
resolution wound images and corresponding medical records
(e.g., clinic visit dates and wound surface areas), and created
additional wound segment annotations and binary infection
labels. In experiments, we successfully demonstrate our



Segmentation Mask

320

240

3
32

32 64 64 32 32 32
32

1

160

120 60 30 15 15 30 60 120

160
804020204080

Input RGB Image

9 x 9 conv
5 x 5 conv

5 x 5 conv 5 x 5 conv
5 x 5 conv 7 x 7 conv

5 x 5 conv 5 x 5 conv

5 x 5 conv

240

320

Encoder Decoder

(a) ConvNet architecture

Ground-truth 
Mask

Raw 
Image

Cropped
Image

ConvNet
Output

Predicted 
Mask

GrabCut
Output

(b) Segmentation results

Fig. 2. The ConvNet architecture and segmentation results. (a) Our model performs wound segmentation in an end-to-end style. (b) A modified GrabCut [18]
was used to roughly crop wound regions from raw images. The model takes cropped images as inputs and provides pixel-wise probabilities of wound
segment masks as outputs (the lighter, the higher probability). Final masks are obtained by setting a threshold of 0.5 on every pixel.

unified framework for wound image segmentation, infection
detection, and healing progress prediction.

II. METHODS
A. Wound Segmentation and Surface Area Estimation

Given an h × w RGB image X ∈ [0, 1]h×w×3, the
objective is to learn a function f that produces a binary
mask Y ∈ {0, 1}h×w for the ground-truth wound region
Rgt ⊆ {1, 2, · · · , h} × {1, 2, · · · , w} (i.e., Rgt is a set of
pixel coordinates that correspond to the wound region):

f(X) ≈ Y, where Yi,j = 1{(i,j)∈Rgt}(X), (1)

To learn the function f in an end-to-end style, we propose
the convolutional encoder-decoder network, which is a vari-
ant of ConvNet. Basically, the encoder network computes
a set of compact feature maps on high-resolution images,
while the decoder network upsamples the feature maps to get
full-size segmentation masks. More specifically, the encoder
network is constructed by stacking basic computation blocks
like convolution, non-linear transformation (e.g. ReLU [17]),
spatial pooling, and local response normalization [13]. We
group the stacked operations into ‘layers’ and define layer-
wise functions g(l) (for computing the l-th hidden layer
activation H(l) of the network) as follows:

H(l) = g(l)(H(l−1);W (l), b(l)), (2)
= normalize(pool(relu(W (l) ∗H(l−1) + b(l))))

where W (l) and b(l) are the weight matrix and bias vector of
the l-th layer, respectively, and ∗ is the convolution operator,
and H(l−1) is either the l − 1th hidden layer activation for
l > 1 or input image X for l = 1 (i.e., H(0) = X).

In a naive approach, f might be constructed from the stack
of layers:

f(X;W, b) = softmax(g(L) · · · g(2)g(1)(X)) (3)

In other words, to produce probability maps, the softmax
layer [3] can be appended to the end of the network. How-
ever, the final probability maps suffer from the down-scaling
effects of the convolution and pooling layers. Interpolation
methods may be used to up-scale them to full size, but at
the cost of blurry outputs. To improve this, we introduce
a decoder network constructed by a stack of layers h(l)

with upsampling operations [5] (which can be considered
as reverse operations of pooling):

h(l)(H) = relu(W(l) ∗ upsample(H) + β(l)), (4)

where W and β are the weight matrix and bias vector of the
l-th layer. Then the function in (3) can be represented by:

f(X;W,W, b, β) = softmax(h(1)...h(L)g(L)...g(1)(X)) (5)

A threshold of 0.5 is used to produce final segmentation
masks from the pixel-wise probabilities.

With the wound region Rgt segmented from the image
and the number of wound pixels (i.e. |Rgt|) counted, we can
estimate the actual wound area S. More specifically, ruler
ticks in wound images are used to make the conversion from
pixel lengths to actual lengths. Denote r as the conversion
ratio, then the actual wound area S is given by

S =
|Rgt|
r2

, (6)

We use Hough transform [9] to parametrize adjacent ruler
ticks (0.5 cm in between) and measure the pixel distance.
B. Wound Infection Detection

This task is defined as a binary classification problem,
i.e., assigning each wound image a binary label to indicate
whether the wound at the photographing time is infected or
not. Given image features x for the wound image X , the goal
is to learn an indicator function f I :

f I(x) ≈ 1{X shows an infected wound}(x) (7)

To learn function f I , we use SVM classifiers [19] using the
ConvNet features.
C. Healing Progress Prediction

With wound images Xt1 , · · · , XtN ∈ [0, 1]h×w×3 and
corresponding wound surface areas St1 , · · · ,StN in past N
time frames t1, t2, · · · , tN , the objective is to learn a function
fH that predicts wound areas for healing date estimation:

ŜtN+∆t = fH(StN+∆t;Xt1 , · · · , XtN ,St1 , · · · ,StN ), (8)

where ∆t ≥ 0 and tN + ∆t is the future date for the
prediction.

In our system, Gaussian process regression is used to
model fH . Given image features x1, · · · xN for wound im-
ages Xt1 , Xt2 , · · · , XtN , the prior on fH is modeled as:

fH(x) ∼ GP(m(x), k(x, x′)), (9)



TABLE I
WOUND SEGMENTATION EVALUATION ON THE TEST SET

Pixel Accuracy mean IoU
SVM (RGB) 77.6% 26.4%

ConvNet 95.0% 47.3%

where the mean and covariance functions are given by
m(x) = w · x + c and k(x, x′) = σ2exp

[
− 1

2‖Λ(x− x′)‖2
]
,

respectively. Hyperparameters w, c, σ and Λ are obtained by
the maximum likelihood estimation [24].

III. EXPERIMENTAL RESULTS

Preprocessing. Images in the NYU Database are in high
resolution (roughly 600 by 900 pixels) which would cause
high computational costs in processing. Since limb regions
cover less than 30% of the area in most images, extracting
features from the entire image is unnecessary. Therefore, we
cropped images to 480 × 640 pixels with a modified version
of GrabCut [18] to concentrate on limb regions (shown in
Fig. 2(b)).
Experimental Setup. We used an NVIDIA Telsa K40 GPU
to speed up parameter learning and tested the performance
of the learned model on a laptop computer with Intel Core
i5-3317U CPU and 8GB RAM.
A. Wound Segmentation and Surface Area Estimation

As illustrated in Fig. 2(a), our proposed convolutional
neural networks have 5 encoding layers followed by 4
decoding layers. Specifically, we used ReLU as nonlinearity
function for both convolutional encoder and decoder. At
the output of network, we used cross-entropy loss function,
together with a L2 regularization term with regularization
coefficient 10−5. We trained the model using the mini-batch
Stochastic Gradient Descent (mini-batch size is 16) with
Nesterov Momentum [22].

For the baseline, we used a linear SVM classifier (with
hinge loss), treating segmentation as binary classification
for each pixel. In our experiments, 9 × 9 image patches
randomly sampled from the image were used as data for
training the linear SVM classifier. We took the raw RGB
intensity as the feature for each pixel. For testing, we adopted
a sliding-window approach to classify each pixel given a
patch centered at that particular pixel.

For this task, we used 500 training images and 150
testing images. The qualitative wound segmentation results
are shown in Fig. 2(b). For quantitative comparison, average
pixel accuracy (PA) and mean intersection-over-union (mean
IOU) are adopted as evaluation metrics. Note that IOU
reflects the degree of overlapping between the predicted
mask and the ground-truth mask (i.e., given the predicted
binary mask Rpred and the ground-truth binary mask Rgt,
the IoU is defined as |R

pred∩Rgt|
|Rpred∪Rgt| ). As shown in Table I, our

proposed ConvNet achieved significantly better results than
the baseline model using raw features.

For area estimation, ruler ticks (short, parallel line seg-
ments) were automatically parametrized by Hough transform
and then the average pixel distance between adjacent long
tick marks (0.5 cm in between) were computed. With the
foreground mask and the conversion ratio (from 0.5 cm to its
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Fig. 3. ROC and PR curves for infection detection. Red curves correspond
to results of the kernel SVM while green curves correspond to results of
the linear SVM. Random guessing is represented by a dashed blue line.

TABLE II
INFECTION DETECTION EVALUATION ON THE TEST SET. THE CONVNET

FEATURES WERE USED FOR TRAINING ALL SVM MODELS.

p Accuracy Recall Precision F-1 Score AUC

Random
guessing

10% 86.9% 10% 3.83% 0.055
50%50% 50% 50% 3.83% 0.071

100% 3.83% 100% 3.83% 0.074
Linear SVM 95.3% 23.1% 33.3% 0.273 76.3%
Kernel SVM 95.6% 30.8% 40.0% 0.348 84.7%

pixel length) estimated, the actual wound area was calculated
via Equation (6).

B. Wound Infection Detection
For this task, 2700 images (including 120 infected cases)

were used for training while we evaluated the performance
on 700 images (including 35 infected cases). We adopted
5-fold cross validation for hyperparameter search. As men-
tioned previously, hidden layer activations calculated by the
ConvNet were used as our features for infection detection
(feature dimension was reduced by a factor of 25 via spatial
pooling). We regarded infection as positive sample and
trained SVM classifiers (e.g., linear and polynomial kernels)
to handle the binary classification task.

In Table II, we report classification accuracy, recall, pre-
cision, F-1 score and the area under ROC curve (AUC) as
our evaluation metrics. Our kernel SVM classifier achieves
84.7% AUC score while linear SVM classifier achieves
76.3%. Both are significantly better than random guessing
(guessing positives in probability p) which achieves 50%
AUC. For detailed comparison, we demonstrate the ROC
curves and precision-recall (PR) curves in Fig. 3.

C. Healing Progress Prediction
For this task, we used 192 wound sequences with their

corresponding medical records (e.g., actual area, wound
image and patient information), splitting into 160 training
sequences and 32 testing sequences. We initialized our
Gaussian process regression (GPR) model using the first half
sequence, and then predicted healing progress in the future
(the second half). In general, our model is assumed to make
long-term predictions, since the wound sequences span a pe-
riod ranging from 40 to 150 weeks. We provide quantitative
analysis of the time (weeks) to take until the wound size
become 10%, 5%, and 0% of original wound area, measured
by mean absolute error (MAEtime). We also report the average
mean absolute error of predicted wound areas across all time
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(a) Wound sequence I
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(b) Wound sequence II

Fig. 4. Healing progress of two wound sequences. The y axis represents
the relative wound area while the x axis represents the time (in weeks).
The red curve corresponds to the predictions of the GP regression while
the blue curve shows the ground-truth. The shaded area indicates the 95%
confidence intervals. Given past records, our GP regression model can make
long-term predictions of the future.

TABLE III
HEALING PROGRESS EVALUATION

MAEtime
(10%)

MAEtime
(5%)

MAEtime
(0%) Avg. MAEarea

Linear 8.84 18.64 3.30 6.06%
Polynomial

(3-order) 16.70 5.11 3.81 6.07%

GP 10.07 2.94 2.17 3.95%

frames (Avg. MAEarea), defined as 1
T

∑T
t=1

|Rarea(t)−Rgt(t)|
Rgt(t)

,
where T is the number of observations of wound condition.

To incorporate both visual and non-visual information, we
constructed our feature vector by including 1) the current
week ordinal; 2) the previous time ordinal; 3) previous
wound area (relative to the original area); 4) visual features
for previous time (reduced to 10 dimensions by performing
PCA [10] on the ConvNet features used in the infection
detection); and 5) patient age and gender. During the training
period, GPR hyperparameters were selected through maxi-
mum likelihood estimation.

As shown in Fig. 4, our Gaussian process regression model
is able to capture healing dynamics with the previously
defined features. Specifically, combining visual and non-
visual characteristics in a temporal fashion, we are able to
predict the healing trends in the future.

We use linear and polynomial (3-order) regression models
as baselines to compare with our GP regression model (Table
III). Considering the average healing duration is 95.67 weeks
in our testing set, we find all the models are accurate enough
to predict the healing dates with our features. It is worth not-
ing that the GP model has the least errors when wound areas
approach 0 (entirely healed). This result suggests reliability
of our proposed system in making long-term predictions,
which can benefit both patients and clinicians.

IV. CONCLUSIONS

We introduced a unified framework for wound segmen-
tation and wound condition analysis. With our proposed
ConvNet model, our system can segment wound image in an
end-to-end style. At the same time, learned ConvNet features
can benefit other tasks, such as wound infection detection and
healing progress prediction. Overall, the system is efficient
enough to process the wound image within 5 seconds on

a typical laptop computer. Finally, we demonstrated the
strength of our system in performing all three tasks.
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